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                                            Abstract 

Falling rigid body through air, water, and sediment is investigated experimentally 

and theoretically. Two experiments were conducted to drop rigid cylinders with the 

density ratio around 1.8 into shallow water (around 13 m deep) in the Monterey Bay 

(Exp-1) and into the Naval Postgraduate School’s swimming pool (Exp-2). During the 

experiments, we carefully observe cylinder track and burial depth while simultaneously 

taking gravity cores (in Exp-1).  After analyzing the gravity cores, we obtain the bottom 

sediment density and shear strength profiles. The theoretical work includes the 

development of 3D rigid body impact burial prediction model (IMPACT35) that contains 

three components: triple coordinate transform, hydrodynamics of falling rigid object in a 

single medium (air, water, or sediment) and in multiple media (air-water and water-

sediment interfaces). The model predicts the rigid body’s trajectory in the water column 

and burial depth and orientation in the sediment. The   experimental data (burial depth, 

sediment density and shear strength) show the capability of IMPACT35 on predicting the 

cylinder’s trajectory and orientation in water column and burial depth and orientation in 

sediment.    
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Nomenclature List 

 

B                                        Length of the sediment rupture line 

(Cd1, Cd2)                           Drag Coefficients Along and Across the Cylinder  

Cl                                       Lift Coefficient 

Ctl                                      Translational Lift Coefficient (kg s-1) 

d                   Cylinder Diameter (m) 

ev                                       Void Ratio 

(f1, f2, f3)                            Added-Mass Ratios for Drag and Lift Forces 

fr                                        Added-Mass Ratio for Moment of Drag and Lift Forces  

(frd2,   frd3)                                         Rotational   Drag Force (N) 

Fb                        Buoyancy Force (N) 

Fd              Drag Force (N) 

(Fd1, Fd2, Fd3)                    Drag Force in the F-Coordinate (N) 

Fl                                       Lift Force (N) 

(Fl1, Fl2, Fl3)                      Lift Force in the F-Coordinate (N) 

Fpw                                                       Pore  Water Pressure Force (N) 

(iE, jE, kE)                          Unit Vectors in the E-Coordinate 

(iF, jF, kF)                          Unit Vectors in the F-Coordinate 

(iM, jM, kM)                        Unit Vectors in the M-Coordinate 

(J1, J2, J3)                          Moments of Gyration (kg m2) 

( )                   Moments of Gyration for Cylindrical Part-i (kg m2) ( ) ( ) ( )
1 2 3, ,i iJ J J i

kp                                       Permeability Coefficient  (m s-1) 

L             Length of the Cylinder (m) 

(l1, l2, l3)                            Lengths of the Cylindrical Parts (m) 

(m1, …, m6)                      Masses of Cylindrical Parts (kg) 

Mb                                     Torque due to the Buoyancy Force (kg m2 s-2) 

Mh                                     Torque due to the Hydrodynamic Force (kg m2 s-2) 

(Md1, Md2, Md3)                Torques due to the Drag Force in the M-Coordinate  

                                           (kg m2 s-2) 

r                                        Position vector (in the M-coordinate) of point on the  

                                          cylinder’s surface 
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rpw                                                       Position vector (in the M-coordinate) indicating the location  

                                         of the cylinder’s rupture line  

R                                       Radius of the Cylinder 

(R1, R2, R3)                       Radii of Cylindrical Parts (m) 

Re                                      Reynolds Number 

V                                       Translation Velocity (m s-1) 

Vr                                      Water-to-Cylinder Velocity (m s-1) 

V1                                     Component of Vr Along the Cylinder (m s-1) 

V2                                     Component of Vr Perpendicular to the Cylinder (m s-1) 

Vw                                     Water Velocity (m s-1) 

V(in)             Initial Speed of Dropping Cylinder  (m s-1) 

ν                                        Molecular Viscosity of the Water (m2 s-1) 

Π                                       Volume of the Cylinder (m3) 

ρ             Density of the Cylinder (kg m-3) 

ρw             Density of the Water (kg m-3) 

χ                                       Distance between COM and COV (m)  

(ψ1,ψ2,ψ3)                       Angles Determining the Cylinders’ Orientation  

ω                                       Angular Velocity (s-1) 

( 1 2, , 3ω ω ω )              Angular velocity Components in the M-Coordinate (s-1) 

( 1 2 3, ,F F Fω ω ω )                     Angular velocity Components in the F-Coordinate (s-1) 

 

 

 

 

 

 

 

 

 4



                                         1.  Introduction  

Study on the movement of a rigid body in fluid has wide scientific significance 

and technical application. The scientific studies of the hydrodynamics of a rigid cylinder 

in fluid involve the nonlinear dynamics, flight theory, body-fluid interaction, and 

instability theory. The body forces include the gravity and the buoyancy force.  The 

hydrodynamic forces include the drag and lift forces that depend on the fluid-to-body 

velocity, and impact force as the body penetrating the air-water or water-sediment 

interfaces.  Usually, a nonlinear dynamical system is needed to predict a falling rigid 

body in fluid, e.g., White [1].   

 Recently, the scientific problem about rigid body movement in the air-water-

sediment columns drew attention to the naval research. This is due to the threat of mines 

in the naval operations. Within the past 15 years three U.S. ships, the USS Samuel B. 

Roberts (FFG-58), Tripoli (LPH-10) and Princeton (CG-59) have fallen victim to mines. 

Total ship damage was $125 million while the mines cost approximately $30 thousand 

(Boorda 1999 [2]). Mines have evolved over the years from the dumb ''horned'' contact 

mines that damaged the Tripoli and Roberts to ones that are relatively sophisticated - 

non-magnetic materials, irregular shapes, anechoic coatings, multiple sensors and ship 

count routines. Despite their increased sophistication, mines remain inexpensive and are 

relatively easy to manufacture, keep and place. Water mines are characterized by three 

factors (Inmam and Jenkins 2002 [3], 2004 [4]): position in water (bottom, moored, rising, 

and floating), method of delivery (aircraft, surface, subsurface) and method of actuation 

(acoustic and/or magnetic influence, pressure, contact, controlled). Accurate mine burial 

predictions are inherently difficult to make because of uncertainties in both mine 
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deployment conditions and the relevant environmental parameters (Rennie et al. 2004 

[5]). The U.S. Navy developed operational models to predict the environmental 

parameters for mine burial prediction (Haeger 2004 [6]). Recently, statistical methods 

such as the Monte Carlo method (Elmore and Richardson 2004 [7]) and the expert system 

method (Rennie et al. 2004 [5]) have been developed. These methods need a core-

physical model for describing the movement of falling rigid body through air-water-

sediment columns.    

When the rigid body is cylindrical, this dynamical system can be simplified using 

three coordinate systems: earth-fixed coordinate (E-coordinate), cylinder’s main-axis 

following coordinate (M-coordinate), and hydrodynamic force following coordinate (F-

coordinate). The origin of both M- and F-coordinates is at the cylinder’s center of mass 

(COM).   The body forces and their moments are easily calculated using the E-coordinate 

system. The hydrodynamic forces and their moments are easily computed using the F-

coordinate. The cylinder’s moments of gyration are simply represented using the M-

coordinate. Recently, Chu et al. [8] developed a recursive model is established to predict 

the cylinder’s translation velocity and orientation in the water column (single phase) on 

the base of the triple coordinate transformation.  

To extend the recursive model from single medium (water column) to multi-

media (air, water, sediment), falling cylinder through air-water and water-sediment 

interfaces (i.e., cylinder contacting with two media) should be particularly analyzed. The 

cylinder is decomposed into two parts with each one contacting one medium. For the air-

water penetration, the cylinder is decomposed into air and water parts. For the water-

sediment penetration, the cylinder is decomposed into water and sediment parts. The 
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body forces (such as the buoyancy force) and surface forces (such as pressure, 

hydrodynamic force) are computed separately for the two parts. A fully three dimensional 

model is developed for prediction the translation velocity and orientation of falling rigid 

cylinder through air, water, and sediment.  Theoretical model development and cylinder 

drop experiment for the model evaluation are depicted in this paper.  

The outline of this paper is as follows: Section 2 depicts the triple coordinate 

systems. Section 3 describes the dynamics for determining the cylinder’s translation 

velocity and orientation. Section 4 presents the equivalent cylinder method for computing 

hydrodynamic forces and torques when the cylinder penetrates the air-water and water-

sediment interfaces. Section 5 describes forces and torques in air and water. Section 6 

describes the resistance from sediments. Section 7 shows the model integration. Section 8 

describes two cylinder drop experiments and observational data processing.  Section 9 

presents the model-data inter-comparison. The conclusions are listed in Section 10.  

                   2. Triple Coordinate Systems 

Consider an axially symmetric cylinder with the centers of mass (COM) X [or 

called gravity center (GC) in literatures] and center of volume (COV) B on the main axis 

(Fig. 1).  Let (L, R, χ ) represent the cylinder’s length, radius, and the distance between 

the two points (X, B).  The positive χ -values refer to nose-down case, i.e., the point X is 

lower than the point B. Three coordinate systems are used to model the falling cylinder 

through the air, water, and sediment phases: earth-fixed coordinate (E-coordinate), main-

axis following coordinate (M-coordinate), and force following coordinate (F-coordinate) 
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systems. All the systems are three-dimensional, orthogonal, and right-handed (Chu et al. 

2004 [8]).  

 

2.1. E-Coordinate 

The E-coordinate is represented by FE(O, i, j, k) with the origin  ‘O’, and three 

axes: x-, y- axes (horizontal) with the unit vectors (i, j) and z-axis (vertical) with the unit 

vector k (upward positive).  The position of the cylinder is represented by the position of 

the COM, 

                                               X = xi +yj + zk,                                                          (1) 

which is translation of the cylinder. The translation velocity is given by                   

                                                   ,      ( , , )d u v w
dt

= =
X V V .                                              (2)    

2.2. M-Coordinate 

      Let orientation of the cylinder’s main-axis (pointing downward) is given by iM. 

The angle between iM and k is denoted by 2 / 2ψ π+ . Projection of the vector iM onto the 

(x, y) plane creates angle ( 3ψ ) between the projection and the x-axis (Fig. 2). The M-

coordinate is represented by FM(X, iM, jM, kM) with the origin ‘X’, unit vectors (iM, jM, 

kM), and coordinates (xM, yM, zM).   In the plane consisting of vectors iM and k  (passing 

through the point M), two new unit vectors (jM, kM) are defined with jM perpendicular to 

the (iM, k) plane, and kM perpendicular to iM in the (iM, k) plane.  The unit vectors of the 

M-coordinate system are given by (Fig. 2) 

                                 ,      M M M M M M= × = ×j k i k i j                                                        (3)  
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The M-coordinate system is solely determined by orientation of the cylinder’s main-axis 

iM.  Let the vector P be represented by E  in the E-coordinate and by M  in the M-

coordinate, and let  be the rotation matrix from the M-coordinate to the E-coordinate,  

P P

E
M R

( )
11 12 13 3 3 2 2

2 3 21 22 23 3 3

31 32 33 2 2

cos sin 0 cos 0 sin
, sin cos 0 0

0 0 1 sin 0 cos

E
M

r r r
r r r
r r r

1 0
ψ ψ ψ

ψ ψ ψ ψ
ψ

ψ ψ

−    
    ≡ =    

−        

R





,               (4)  

which represents  (iM, jM, kM),  

                          ,     
11

21

31

M

r
r
r

 
 =  
  

i
12

22

32

M

r
r
r

 
 =  
  

j ,    
13

23

33

M

r
r
r

 
 =  
  

k .                                             (5) 

Transformation of  into  contains rotation and translation, M P E P

                                  .                                                          (6) 2 3( , )E E M
M ψ ψ=P R P + X

3 Let the cylinder rotate around (iM, jM, kM) with angles ( 1 2, ,ϕ ϕ ϕ ) (Fig. 2). The 

angular velocity of cylinder is calculated by 

                                   1 2
1 2 3,   ,   d d

dt dt dt
3dϕ ϕω ω ω= = =

ϕ ,                                             (7) 

and 

                             2 2 3
1 1 2,    ,     d d d d

dt dt dt dt
3ψ ϕ ψ ϕψ ϕ ω= = = ≠ .                                      (8) 

If ( 1 2, , 3ω ω ω ) are given, time integration of (7) with the time interval t∆  leads to  

                            1 1 2 2 3 3,   ,   t t tϕ ω ϕ ω ϕ ω∆ = ∆ ∆ = ∆ ∆ = ∆

2 3,

.                                            (9)    

The increments ( ψ ψ∆ ∆ ) are determined by the relationship between the two rotation 
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matrices ( )2 2 3,E
M R 3ψ ψ ψ ψ+ ∆ + ∆ and ( )2 3,E

M R ψ ψ

( )( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )

3 3 2

3

2 2

in 0 cos 0 sin
cos 0 0 1

0 0 1 sin 0 cos

ϕ ϕ ϕ
ψ ϕ

2

0
ϕ

2 2 3 3 2, ,E E
M MR Rψ ψ ψ ψ ψ 3 3

cos s
sin ϕ

ϕ ϕ

∆ ∆ ∆∆ −   
   ∆+ ∆ + ∆ = ∆   
   − ∆ ∆   

1 2V

 

r = +V V 1 1 FV=V i 2 2 FV=V j

1 ( )r F F= ⋅V V i i

( )r r F2 F= − ⋅V iV V i

11

21

31

F M

r
r
r

 
 = =  
  

i i

                                                                                                                                  (10) 

 2.3. F-Coordinate    

The F-coordinate is represented by FF(X, iF, jF, kF) with the origin X, unit vectors 

(iF, jF, kF), and coordinates (xF, yF, zF). Let Vw be the fluid velocity. The fluid-to-cylinder 

velocity is represented by Vr = Vw - V, that is decomposed into two parts, 

                                     ,  ,   ,                                (11) 

where  

                                                       ,    

is the component paralleling to the cylinder’s main-axis (i.e., along iM), and  

                                                   , 

 is the component perpendicular to the cylinder’s main-axial direction. The unit vectors 

for the F-coordinate are defined by (column vectors) 

                  ,       jF = V2/ |V2|,        kF = iF × jF.                            (12) 

The F-coordinate system is solely determined by orientation of the cylinder’s main-axis 

(iM) and the water-to-cylinder velocity. Note that the M- and F-coordinate systems have 

one common unit vector iM (orientation of the cylinder). 
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 Let E
F R  be the rotation matrix from the F-coordinate to the E-coordinate,  

               ( ) (

' '
11 12 13

' '
2 3 21 22 23

' '
31 32 33

, , ,       ,E
F MF MF M

r r r
r r r
r r r

ψ ψ φ φ
 
 ≡  
  

R )F≡ j j ,                                    (13)  

which leads to 

                                    i ,   
11

21

31

F

r
r
r

 
 =  
  

'
12
'

22
'

32

F

r
r
r

 
 =  
  

j ,    

'
13
'

23
'

33

F

r
r
r

 
 =  
  

k .                                         (14) 

Here, MFφ  is the angle between the two unit vectors ( ),M Fj j . Let the vector P be 

represented by F  in the F-coordinate. Transformation of F  into  contains rotation 

and translation, 

P P E P

                                        .                                                 (15) 2 3( , , )E E F
F MFψ ψ φ=P R P + X

Use of the F-coordinate system simplifies the calculations for the lift and drag forces and 

torques acting on the cylinder. Since the M- and F-coordinates share a common axis iM = 

iF, the rotation matrix from the F- to M- coordinate systems is given by  

                       1
2 3 2 3 22 23

32 33

1 0 0
= ( , ) ( , , ) 0

0

M M E E E
F E F M F MF e e

e e
ψ ψ ψ ψ φ−

 
 = =  
  

R R R R R  ,             (16)                    

is two-dimensional with the rotation matrix given by  

                      ,      2 3
M
F =   E e e 22

2
32

e
e
 

=  
 

e ,    23
3

33

e
e
 

=  
 

e .                                           (17)   

 Let the cylinder rotate around (iF, jF, kF) with the angular velocity components 

represented by ( 1 2 3, ,F F Fω ω ω ) (Fig. 2). They are connected to the angular velocity 

components in the M-coordinate system by  
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                                     22
1 1

33

,    
F

F F
MF

ωω
ω ω

ωω
   

= =   
  

E .                                                  (18) 

 

                                            3. Dynamics 

3.1. Momentum Balance 

          The translation velocity of the cylinder (V) is governed by the momentum 

equation in the E-coordinate system,                                        

                               
0
0 nh h

u
d v
dt

w g
ρ

   
+   = − +    Π

      

F F ,                                                                (19) 

where g is the gravitational acceleration; Π  is the cylinder volume; ρ is the rigid body 

density; ρΠ  = m, is the cylinder mass; Fnh is the non-hydrodynamic force; and Fh is the 

hydrodynamic force (i.e., surface force including drag, lift, impact forces). Both Fnh and 

Fh are integrated for the cylinder. The drag and lift forces are calculated using the drag 

and lift laws with the given water-to-cylinder velocity (Vr).  In the F-coordinate, Vr is 

decomposed into along-cylinder (V1) and across-cylinder (V2) components.  

 The non-hydrodynamic force Fnh is the buoyancy force (Fb) for the air and water 

phases,  

                                                   Fnh =  Fb = k ( a gρ Π , w gρ Π ),  

where ( aρ , wρ ) are the air and  water densities.  Fnh is the resultant of buoyancy force 

(Fb), pore water pressure force (Fpw), and shearing resistance force (Fs) for the sediment 

phase (see Section 6).  

3.2. Moment of Momentum Equation  
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It is convenient to write the moment of momentum equation 

                                    2 ( ) nh h
d
dt

= − × + +
ω Ω ω M Mi iJ J ,                                            (20) 

 in the M-coordinate system with the cylinder’s angular velocity components ( 1 2, , 3ω ω ω ) 

defined by (19).  Here, the first term in the righthand-side is an apparent torque (similar 

to the Corilois term in Earth science) due to the use of the rotating coordinate system (i.e., 

the M-coordinate), and    

                                                    2 3M Mω ω= +Ω j k ,                                                  (21) 

is the angular velocity of the M-coordinate system. The apparent torque If 1 0ω = , then 

, which leads to   =Ω ω

                      1

2 1 3 3 1 2 1

0,     if  0  (i.e., ),  
2 ( ) {

2 2 ,    if  M MJ J 0.
ω

ωω ωω ω
= =

=
− +

Ω ω
J Ω ω

j k
i− ×                       (22a) 

≠

0 ,

In this study, the apparent torque is neglected. The gravity force, passing the COM, 

doesn’t induce the moment.  Mnh and Mh are the non-hydrodynamic and hydrodynamic 

force torques.  In the M-coordinate system, the moment of gyration tensor for the axially 

symmetric cylinder is a diagonal matrix 

                                             
1

2

3

0 0
0
0 0

J
J

J

 
 =  
  

J                                                          (23) 

where J1, J2, and J3 are the moments of inertia. The buoyancy force induces the moment 

in the jM direction if the COM doesn’t coincide with the COV (i.e., 0χ ≠ ),   

                                                    2 Mcos .b b χ ψ=M F j                                                (24)      
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Computation of non-hydrodynamic and hydrodynamic forces (Fnh, Fh) and torques (Mnh, 

Mh) is more complicated for a cylinder penetrating through air-water and water-sediment 

interfaces than falling through a single medium such as water. At the instance when the 

cylinder penetrates into an interface, three situations may exist: the cross section is a 

complete ellipse (Fig. 3a), a cut-off ellipse with one side straight line (Fig. 3b), or a cut-

off ellipse with two straight lines (Fig. 3c).  The interface separates the cylinder to two 

parts. Each part contains a non-cylinder D and a sub-cylinder C (Fig. 4). Let (Lc , Ld), 

 and (  be the lengths, surfaces,  and volumes of [C, D],  (h1, h2) the 

depths of the two sides of D (Fig. 5). The characteristics of the geometric parameters (Lc , 

h1, h2) are listed in Table 1.  The COV for the portion [C, D] is called the partial COV 

(PCOV). 

( ),c dΩ Ω ),c dΠ Π

                                4. Equivalent Cylinder Method 

 4.1. Equivalent Cylinder 

           During penetration, the part that contacts fluid (air or water) is treated as a cylinder 

[E] with the same mass and PCOV location and with the assumption that the buoyancy 

and hydrodynamic forces and torques for [C, D] is the same for [E]. The cylinder [E], 

called the equivalent cylinder, is used to represent the part [C, D]. Thus, the theoretical 

procedure developed for calculating external forcing (buoyancy and hydrodynamic forces 

and torques) for a cylinder (Chu et al. 2004 [8]) can be easily used for [E].     

 4.2. Volume of [C, D]  

 In the M-coordinate system, the area of the vertical cross-section of D is given by 

                      ( ) ( ) ( )( )22 1 2( ) cos 1 ,
h x

R R h x R R h x
R

−  
= − − − − −    

 
s x                  (25a)   
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where h(x) is the depth of the cross-section, 

                             ( )1 1( )
d

hh x x
L
∆

= + −h x ,  2 1,h h h∆ = −                                             (25b) 

where Ld is the length of D (see Fig, 5). Integration of s(x) along x axis gives the volume 

of D,  

                              Π = 2

1

( )
x

d x
s x dx∫

3
2

1 2( , )d
d

R L R l
h

β κ κ π=
∆

= ,                                    (26) 

where                                

                                   1
1 21 ,  1h 2h

R R
κ κ= − = − ,                                                             (27a)         

( ) ( ) ( ) ( )
3 3

1 2 2 1 22 2
1 2 1 1 1 1 2 2 2 2

1 1( , ) cos 1 1 cos 1 1
3 3

β κ κ κ κ κ κ κ κ κ κ− −≡ − − + − − + − − − 2 ,  

                                                                                                                                       (27b) 

                                             1 2( , )d
d

RL
h

l β κ κ
π

=
∆

.                                                           (27c) 

Here, ld is the equivalent length of D.  The volume of C is calculated by  

                                                       2
c cR LπΠ = .                                                      (28) 

The total volume of [C, D] is  

                                                2R lπΠ = ,   

and                                     

                                                l L ,  c l= + d

is the length of the equivalent cylinder E.  

 4.3. PCOV of  [C, D] 
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Let ( ,ξ η+ + ) and ( ,ξ η− − ) be the PCOV of the head [C, D]  (in the direction of iM) 

or tail (in the opposite direction of iM)  [C, D] (denoted by B± , positive sign for the head 

part) in the M-coordinate system,    

1( , ) ( , ) ( , )
c d

x z dv x z dvξ η± ±

Π Π

 
= + 
Π   
∫∫∫ ∫∫∫  

                    2

1
1

1 ( ,0) ( , ) ( )
2

xc
c x

c d

Lx x z s x dx Π + Π +Π  ∫= ± .                                       (29) 

where  1x  is defined as the location of  interface between C and D.   Substitution of (25), 

(26) and (28) into (29) leads to  

    
2 2

1 11 1
1 2

1( , ) ,   
( , ) (1 ) 2

d
x

d c d

LR hx
L hL L h R

ξ µ
β κ κ π β

±
− − 2

cLκ κ
 ∆    = ±    + ∆ ∆     

∓               (30)   

( )2 11 1
1 2

 cos ( , ),
6 ( , )(1 ) z

c d

Rsign
hL L 2η µ κ κ

β κ κ π β
±

− −= ± Ψ
+ ∆

                        (31) 

where  

( ) ( )

( ) ( ) ( )
( )

( ) ( )

2 1 2 1 2 2
1 2 2 2 1 1 1 1 2 2

3 32 2 2 2 1
2 2 1 1 2 2 1 1 2

1 1 2 2
1 2 2 1 1 1 2

3 32 21
2 1

1( , ) 2 1 cos 2 1 cos 1 1
4

1 11 1 1 1 sin si
4 8

cos cos 1 1

1 1 ,
3

xµ κ κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ

κ κ κ

− −

− −

− −

 ≡ − − − + − − − 

 + − − − − − − − + −  

− − + − − −

 − − − −  

1
1n κ

 

( ) ( ) ( )3 32 2 2 2 1
1 2 1 1 2 2 1 1 2 2 1 2

3( , ) 1 1 1 1 sin sin
2z

1µ κ κ κ κ κ κ κ κ κ κ κ κ− −≡ − − − + − − − + − .              

                                                                                                                                    (32) 

Let ( ,ξ η ) be ( ,ξ η+ + ) for the head part and ( ,ξ η− − ) for the tail part.  The position vector 

of PCOV in the M-coordinate system is represented by  
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                                 M M. PCOV ξ η= + kr i                                                               (33) 

                 5.   Forces and Torques in Air and Water   

Calculation of the buoyancy force and torque is straightforward. Calculation of 

the surface force and torque is not simple.  Assume that the surface force and torque on 

the equivalent cylinder E are the same of on the [C, D].  If [C, D] moves in fluid (air or 

water), the recursive model recently developed (Chu et al. 2004 [8]) can be used to 

calculate for equivalent cylinder E. Thus, the water column is taken as the example to 

illustrate the calculation of the hydrodynamic force and torque. Computation of the 

surface force and torque due to sediment is described in Section 6.  

 5.1. Buoyancy Force and Torque 

The buoyancy force F  is the product of the air (or water) density and volume,  b

              ( )2( )     b c d c dR L lρ ρπ= Π +Π = + .k

b

F k                                            (34) 

The torque due to the buoyancy force for the upper or lower part is given by   

                             M r .                                                                  (35) b PCOV= ×F

Substitution of  (33) and (34) into (35) leads to  

                    ( )( )2
2 2 Mcos sin .    b c dR L lρπ ξ ψ η ψ= − + +M j                                    (36) 

      5.2. Drag and Lift Forces  

             The drag and lift forces exerted on the cylinder is represented by  

                                  F i1 2 3(h d F d F d FF F F= + + +) lj k F ,                                      (37) 
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where (Fd1, Fd2, Fd3) are the components of drag force  along iF (along-cylinder), jF 

(across-cylinder)  and kF directions.  Fl represented the lift force. Linearization of drag 

and lift laws is used in the computation. 

 Let (Cd1, Cd2) be the drag coefficients along- and across-cylinder directions 

(Reynolds number dependent).   The drag force coefficients are calculated on the base of 

steady flow, it is different from the fluid around an accelerated solid body. The added 

mass correction is represented by the ratios (f1, f2, f3) in the three directions of the F-

coordinate system.    

 The drag force along-iF is calculated by  

                                                        1 1 1( ) ,     d tdF C t V=                                                (38) 

                                       
2

1 1 1
1

( )
2 (1 )

w
td d

RC t C V t
f

ρπ
≡

+
 ( ) .                                         (39) 

Cd1 is almost independent on the axial Reynolds number (Re) when Re > 104, but 

dependent on the cylinder’s aspect ratio (Crow et al., 2001 [9]),  

           C                       (40)     2
1

1.0,                                         if  8
0.75 / 32.1934 0.09612 / ,     if  8 0.5  

1.15,                                           if    0.5.
d

δ
δ δ

δ

>
= + + ≥ >
 ≤

δ

Substitution of (11), (12) into (38) leads to  

                    1 1 11( )
w

d F td w

w

u u
F C t v v

w w

    
    = − −    
        

i I i ,      I ,                                     (41)   T
11 F F= i i

where the superscript ‘T’ denotes the transpose.  

The drag force along-jF is calculated by  
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                              ( )
2 2'

2 2 2 2 2
2

2

( ) ( )
(1 )

L

w
d d td

L

F R C V d C t V f
f

χ

χ

ρ η
−

− −

= =
+∫ 2rd t+

3

,                    (42) 

where  

                                        V V'
2 2( ) Fη ω η= − ,                                                                  

is the  water-to-cylinder  velocity  at the surface in the jF direction and  

                         2
2 2

2

( ) 2
(1 ) 2

Fw
td d

VC LR
f

ρ χω≡ +  
3
+ C t ,                                                 (43a) 

                  2 2
2 2

2

1 1( ) 2 ( )
(1 ) 2 24

Fw
rd df t C LR L

f
ρ χ ≡ + +  

2
3ω

≥

.                                         (43b) 

An empirical formula is used for calculating Cd2 (Rouse, 1938 [10]) 

2

1.9276 8 / Re, if  Re 12
1.261+16/Re, if 12< Re 180
0.855+89/Re, if  180 < Re 2000

0.84+0.00003Re, if 2000 < Re 12000
1.2 - 4/  if  12000 < Re 150000,  10

0.835 - 0.35/ , if  12000 < Re 150000,  2 10
dC δ δ

δ δ

+ ≤
≤
≤
≤

= ≤
≤ ≤ <

0.7-0.08/ , if  12000 < Re 150000,  2 
1.875 0.0000045Re, if  150000 < Re 350000
1/(641550/Re + 1.5), if   Re > 350000.

δ δ











≤ <
 − ≤


                    (44) 

Substitution of (11), (12) into (42) leads to 

            2 2 22 2( ) ( ) ,
w

d F td w rd

w

u u
F C t v v f t

w w

    
    = − − +    
        

Fj I ji    I T
22 F F= j j .                              (45) 

The angular velocity ( 2
Fω ) causes non-uniform water-to-cylinder velocity in the 

kF direction,  

                                                V3 2
Fω η= .                                                                 (46) 
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The drag force along-kF is calculated by      

           
02

2 2
3 2 2 2 F 3

2 0
2

( )
(1 )

L

F Fw
d d rd F

L

C R d d f t
f

χ

χ

ρ ω ω η η η η
−

− −

 
 = − +
  

∫ ∫ ( )= kF k ,                 (47) 

where    

                      ( )2 2
3 2

2

1( ) 3 4
6 (1 )

Fw
rd d

Rf t C L
f 2 2

Fρ χ χ ω ω≡ − +
+

,                                         (48) 

is the rotational drag force in the kF direction. 

           The water-to-cylinder velocity determines the lift force (von Mises 1959 [11]) 

        
2

'
2

2

( ) ( )

L

tl
l

L

C t V d
L

χ

χ

η η
−

− −

 
 =  
  

∫ FF k ,    2
2

( ) ,
(1 )

w
tl lC LR V

f
C t ρ

≡
+

       (49)                     

where Cl is the lift coefficient. An empirical formula is used for calculating Cl (Sumer 

and Fredsoe 1997 [12]),   

                             C                              (50) 1 2 1 2

1 2 1 2

2 / ,                   if  / 4 
8 0.24( / 4),     if  / 4;      l

R V R V
R V R V

ω ω
ω ω

≤
=  + − >

Substitution of (11), (12) into (49) leads to                         

                    F I ,  32 F( ) ( )
w

l tl w rl

w

u u
C t v v f t

w w

    
    = − − +    
        

i k T
32 F F=I k j ,                                 (51) 

where     

                                              3( ) ( ) F
rl tlf t C t χω≡ ,                                

is the rotational lift force. Substitution of (41), (45), (47), and (51) into (37) and use of 

(14) lead to  
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[ ] [
' '

12 13
' '

1 11 2 22 32 2 22 3 23
' '

32 33

( ) ( ) ( ) ( ) ( ) ( ) .
w

h td td tl w rd rd rl

w

u u r r
C t C t C t v v f t r f t f t r

w w r r
]

       
      = − + + − + + + 
      

 


            

F I I I i


                                                                                                                                        (52) 

Substitution of (52) into (19) leads to the cylinder’s momentum equation,  

                                                1

u u
d v v
dt

w w

   
   = − +   
      

D αi ,                                           (19a) 

where  

              
( )

' '
12 13
'

1 1
' '

32 33

0
0

1 /

w

w

w w

u r
v b r
w g rρ ρ

'
22 2 23 ,

r
b r

r

     
     ≡ − + +     
      −       

α Di                                                          

             1 11 2 22 23( ) ( ) ( ) ,   td td tlC t C t C t
ρ

+ +
≡

Π
I I ID   2

1
( ) ,rdf tb

ρ
≡

Π
   3

2
( ) ( )rd rlf t f tb
ρ
+

≡
Π

.                                          

 
  
 5.3. Drag and Lift Torques 

For an axially symmetric cylinder, the moment of the hydrodynamic force in iF 

direction is not caused by the drag and lift forces, but by the viscous fluid.   The moment 

of the viscous force of steady flow between two rotating cylinders with the common axis 

is calculated by (White [1]) 

                                ( 012
0

2
1

2
0

2
14 ωωπµ −
−

⋅
=

rr
rr

M ) ,                                             

where  ( ) and (1 0,  r r 1ω , 0ω )  are the radii and angle velocities of  the inner and outer 

cylinders; µ  is the viscosity. Moment of the viscous force on one rotating cylinder is the 
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limit case of the two rotating cylinders as ∞→0r  and 0 0ω = . The moment of the 

viscous force around iF is calculated by  

2Ld

2 dη η η
 
 

F( )C t−  
  

4 2

2
L 4 F

2χ ω+


F 3( )F F
m t ω

F= − M k

3 2
2

1 1
4

L L 3
F L 3

Fχ χ ω+

2 χ

        1 1 1 ,v mC Fω= −M i         .                                                        (53) 1mC πµ≡

 Same as the hydrodynamic forces, the torques along jF and kF axes, (Md1, Md2, 

Ml),  are calculated. When the cylinder rotates around jF with the angular velocity 2 ,Fω  

the drag force causes a torque on the cylinder in the jF direction,   

   
2

2 2 2 2 F 2 2

2

(1 )

L

F F Fw
d d m

L r

C R
f

χ

χ

ρω ω ω
−

− −

= − = +∫M j j ,               

                       2
2 2

1 1 3( )
2 (1 ) 16

w
m d

r

C t C R L
f

ρ χ≡ +
+  

,                             (54) 


where  fr is the  added mass factor for the moment of drag and lift forces.  If the water-to-

cylinder  velocity or the cylinder mass distribution is non-uniform ( 0χ ≠ ), the drag force 

causes a torque on the cylinder in the kF direction,  

      ( )
2 2

3 2 2 3 3 3

2

( )
(1 )

L

w
d d

L r

C R V d C M t
f

χ

χ

ρ ω η η η
−

− −

 
 = − +  +
  
∫ ,        (55)  k

                3 3
3 2 2( )

(1 ) 6
w

m d
r

C t C R V L V
f

ρ ω χ ≡ + +  
,                 (56a) +

                  2
3 2( )

(1 )
w

d
r

M t C R V L
f

ρ
≡

+
.                                                     (56b) 

The lift force exerts a torque on the cylinder in the jF direction,  

         ( )
2

2 2 3 F 3

2

( ) ( )

L

F Fw
l l ml l

L kr

C R V d C t M t
f

χ

χ

ρ ω η η η ω
−

− −

 
 

F = − − = +  
  
∫M j j ,                  (57) 
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2 2
2

1( )
(1 ) 12

w
ml l

r

C t C V R L L
f

ρ χ ≡ + +  
,      2

2( ) w
l

kr

M t R LV
f
ρ χ≡ .                 (58) 

After the angular velocity components ( 2 3,F Fω ω ) are transformed into ( 2 3,ω ω ) 

(from the F-coordinate to the M-coordinate) using (18), and the unit vectors (jF, kF) are 

transformed into (jM, kM) using the rotation matrix (17), the drag force torques in the jF 

direction (54) and in the kF direction (55) are represented by   

                    ,                                         (59) 2
2 2 22 22 2 2

3

( ) ,    T
d mC t

ω
ω
 

= − = 
 

M H Hi e e

e

e

                  ,   H ,                            (60) 2
3 3 33 3

3

( ) ( )d mC t M t
ω
ω
 

= − − 
 

M H i 3e 33 3 3
T= e e

and the lift torque in the jF (57) is represented by   

       ,     .                                       (61) 2
2 23

3

( ) ( )l ml lC t M t
ω
ω
 

= + 
 

M H i 2 23 2 3
T=H e e

Summation of (53), (59), (60), and (61) leads to  

               (62) 
[ ]

2 3 2

2
1 1 F 2 22 3 33 23 2 3 3

1

( ) ( ) ( ) ( ) ( ) .

h d d l

m m m ml lC C t C t C t M t M t

ν

ω
ω

ω

= + + +

 
= − − + − + − 

 

M M M M M

i H H H ei

  
                                6. Resistant Forces in Sediment 

 6.1. Water Cavity  

 As the cylinder impacts and penetrates into the sediment, it pushes the sediment 

and leaves space in the wake. This space is re-filled by water right away and water cavity 

is produced (Fig. 7). At the instance of the penetration, the total resistant force on the 

cylinder is represented by  
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                                                                         (63) [ ( ) ] ,
sed

s s w w
b sh b h pwd

σ

δ= + + + +∫F f f f f σ F

where ( s
bf , shf ) and ( f ) are the sediment buoyancy and shear resistance forces and 

water buoyancy and hydrodynamic forces (per unit area) at the point r over the cylinder’s 

surface; 

,w w
b hf

sedσ  is the area of the cylinder’s surface below the water-sediment interface; Fpw  

is the pore water pressure force on the whole cylinder.  In the sediment, the magnitude of 

the sediment non-hydrostatic force is much larger than the magnitude of the water 

hydrodynamic force,  

                                                s w
hf f� ,  

 
which means that f  in (63)  can be neglected.  The water buoyancy force per unit area 

over the cylinder’s surface is defined by  

w
h

                                                                                           (64)  ( )w
b w wsg z zρ= − −f ,n

 
where zws is the depth of the water-sediment interface, and  n is the unit vector normal to 

the cylinder surface (outward positive). 

 Let  v be the velocity at point r (represented in the M-coordinate) on the cylinder 

surface,  

                                       = + ×v V ω r .                                                          

The step function δ  is defined by                

                                                                                           (65)    
1              0

 
0               0

δ
≥

=  ≤

v n
v n
i
i

which shows that the sediment buoyancy and shear resistance forces acts when the 

cylinder moves towards it. Let vn be the normal velocity. The tangential velocity is 

represented by  
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                                       .nτ = −v v v                                                              (66) 

The tangential unit vector ( ) is defined by   τ

                                                τ

τ

= −
vτ
v

,                                                                   (67) 

which is  opposite to τv (Fig. 6).  

6.2. Sediment Resistant Forces 

When the cylinder impacts and penetrates into the sediment, it will create a large 

transient pore pressure in the sediment that causes ruptures in the sediment which 

influences the lifting forces on the cylinder (Palmer, 1999 [13]; Simonsen and Hansen, 

1998 [14]).  

 The sediment buoyancy force per unit area is defined by  

                                                                                  (68)  ( ') ',     
z

s
b s

ws

z
z gdzρ= − ∫f n

 
where  ( )s zρ  is the sediment density.  

  The shear resistant force per unit area fsh depends on the cylinder’s penetration 

speed (V) and the sediment strength. Let S(z) be the sediment shear strength. The shear 

strength is defined as the maximum stress that a material can withstand before failure in 

shear. Calculation of shear strength depends upon the test method.  

 After entering the water-sediment interface, the cylinder reduces its speed (V), 

and the sediment shearing resistant force also decreases. When the cylinder ceases, the 

shearing resistant force should be the same as the sediment shear strength S(z).  Thus, the  

shearing resistant force is represented by  

                                                ( ) ( ) ,sh S z G V=f τ     G(0) = 1,                                  (69) 

 25



where G(V) is the impact function defined by  

                                  1( ) [1 (1 )exp( )]
rest

VA A
V

−= − − −G V .                                        (70)     

Here,  Vrest is an infinitesimally small value for V  representing the cease of  the cylinder 

in the sediment. The impact function has the following feature,  

                                 ( )
V
Lim G V A
→∞

= ,                                                                 (71) 

  
which shows that when the cylinder impacts on the sediment (usually with large 

penetration speed), the impact function takes the value of A. Thus, we may call A the 

impact factor.  Note that A and Vrest are the two tuning parameters of the numerical model.  

In this study we use  

                                  A = 10,           Vrest = 0.04 m s-1.                                            (72) 

The shear strength of the sediment is directly measured from the gravity cores using the 

Fall Cone Apparatus (Model G-200) (see Section 8.2).   

 The total force due to the pore water pressure on the cylinder is computed by 

(Hansen et al., 1994 [15]) 

                                31( )( )
8

v
pw s

p v

egw dwz
k e dt

π ρ
 +

= +
  

B F k ,                                      (73) 

where kp is the permeability coefficient (10-4 m s-1, Hansen et al., 1994), ev  (~0.50) is the 

void ratio, B is the length of the rupture line.  Substitution of (64), (68), (69), and (73) 

into (63) leads to 

          [ ]( ) ( ) ( ') ' ( )s
s w ws

ws

sed sed

z

z
G V S z d z gdz g z z d

σ σ
δµ σ δ ρ ρ σ

  
= − + −      
∫ ∫ ∫τ nF  
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                        31( )( )
8

v
s

p v

egw dwz
k e dt

Bπ ρ +
+ +k ,                                                       (74) 

which is the external force acted on the cylinder in the sediment phase.  The torque due to 

the sediment ( sM ) is calculated by 

          [ ]( ) ( ) ( ) ( ) ( ') ' ( )s
s w ws

ws

sed sed

z

z
G V S z d z gdz g z z d

σ σ
δµ σ δ ρ ρ σ

  
= × + × + −      
∫ ∫ ∫M r τ r n  

                               31( ) ( )( )
8

v
pw s

v

egw dwz
k e dt

Bπ ρ +
+ × +r k .                                          (75) 

where rpw is the position vector (in the M-coordinate) indicating the location of the 

cylinder’s rupture line.  

                                  7. Model Integration  

The momentum equation (19) and moment of momentum equation (20) are 

integrated numerically using the triple coordinate transformation. The momentum 

equation is integrated in the E-coordinate system. The hydrodynamic (drag and lift) force 

is transformed from the F-coordinate to the E-coordinate. The moment of momentum 

equation is integrated in the M-coordinate system. The hydrodynamic torque is 

transformed from the F-coordinate to the M-coordinate.  After the cylinder penetrates 

into the sediment, the resistant force due to sediment sf  reduces the cylinder’s speed and 

changes the turning angle.  

 7.1. Cylinder’s Angular Velocity  

Substitution of (24) and (62) into (20) leads to the equations for ( 1 2, , 3ω ω ω ),  

                                              1
1 1

d a
dt
ω ω= − ,                                                    (76)              
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2

3 3

,d
dt

ω ω
ω ω
   

= − ⋅ +   
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Β α                                         (77)    

where  
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≡ =
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J
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 
 
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B H Hi 3H , 

               ( )2
2 2 3 3

2

3

1 0
1

cos .
1 00

w
l

J gM M
J

J

χ ρ ψ

 
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2
 Π ≡ − +     

 
 

α e ei                     (78) 

 

Eq. (76) has the analytical solution, 

                                     ( )1 1 0 1( ) exp[ ( )]t t a t tω ω= − 0− ,                                           (79)  

which represents damping rotation of the cylinder around the main axis (iM). Substitution 

(79) into (8) leads to  

                                  ( )1
1 0 1 0exp[ ( )]d t a t

dt
tϕ ω= − − , 

and its integration leads to  

                   1 0
1 1 0

1

( )( ) exp[ ( )] ( )tt a t t
a 1 0t

ωϕ = − − − +ϕ .                                        (80) 

Eqs. (79) - (80) are the analytic formulae for predicting the angle and angular velocity 

around the cylinder’s main axis ( 1ω , 1ϕ ).  

 7.2. Recursive Procedure 

The basic equations (19), (77),  (79), and (80) describe the dynamics of the falling 

cylinder.  It is noted that the coefficient matrices B, D and the vectors α ,  depend on 1 2α
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drag/lift coefficients. Besides, B, D, , depend on the fluid-to-cylinder velocity and 

cylinder’s angular velocity. Eqs. (19) and (79) are nonlinear equations.  

1α

2

3

0 0

d

 
 
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2

0
b

2 2,   =D V V

1 ,    +Β γ

[ ](i nt

i

−

= 2,

t

Let matrices B and D be separated into diagonal and non-diagonal parts,  

        D = D1  + D2,      ,        
1

1 0
0 0

d
d≡D

12 13

2 21 2

31 32

0
0

0

d d
d
d d

3d
 
 ≡  
  

D .                    (81) 

                 B = B1  + B2,      1
1 0

b 
≡  
 

B ,        12
2

21

0
0

b
b
 

≡  
 

B .                               (82) 

Substitution of (81) into (19) leads to  

         
1

1 1

3

,    
u v

d v v
dt

w v

   
   = − + ≡ − ≡   
      

V D V β β αi i ,                                       (83a) 

and substitution of (82) into (77) leads to 

                            2 2
2

3 3

d
dt

ω ω ω
ω ω
     

= − ⋅ ≡ −     
     

γ α B i .                               (83b) 2
2

3ω

 If B1, D1, ,  β γ  are taken the values given at the present time step tn, (83a) and (83b) can 

be treated as ‘linear’ equation (local linearization) on [tn, tn t+ ∆ ] and integrated 

analytically,     

   1

( ) ( ) ,                      if  ( ) 0,

( ) ( )( ) ( ) exp ) , if   ( ) 0,
( ) ( )

1, 3,

i n i n i n

i n i n
i n i n i n

i n i n

v t t t d t

t tv t v t d d t
d t d t

β

β β
+

+ ∆ =
 = − ∆ + ≠ 
 


           (84) 

and       
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[ ]1

( ) ( ) ,                    if  ( ) 0,

( ) ( )( ) ( ) exp ( ) , if   ( ) 0,
( ) ( )

2,3.

i n i n i n

i n i n
i n i n i n i n

i n i n

t t t d t

t tt t b t t d t
b t b t

i

ω γ

γ γω ω+

+ ∆ =
 = − − ∆ + ≠ 
 
 =

             (85) 

Integration of (83a) twice from tn leads to the translation position of the cylinder at tn+1, 

[ ]{ }

2

1

1( ) ( ) ( ) ,                                        if   ( ) 0,
2

( )
( ) 1 ( )( ) ( ) exp ( ) 1 ,  if   ( ) 0,
( ) ( ) ( )

i n i n i n i n

i n
i n i n

i n i n i n i n
i n i n i n

x t v t t t t d t
x t

t tx t t v t d t t d t
d t d t d t

β

β β+

 + ∆ + ∆ ==    + ∆ − − − ∆ − ≠   
                                                                                                                                    (86) 

where  1 ,x x≡  2x y≡ , and 3x z≡ .   Integration of (83b) twice from tn leads to the 

change of rotation angles ( 2 3,ϕ ϕ ) at tn+1,  
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 =
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∆ =  (87)    

Eqs. (84)-(85) are the recursive formulae for predicting cylinder’s translation 

velocity (u, v, w) and angular velocity ( 1 2, , 3ω ω ω ), and Eqs. (86)-(87) are the recursive 

formula for predicting cylinder’s translation position (x, y, z) and rotation angle 

increments ( 2 , 3ϕ ϕ∆ ∆ ) in the M-coordinate system. The cylinder’s orientation is 

represented by angles ( 1ψ , 2ψ , 3ψ ) with 1 1ψ ϕ= , and a relationship between ( 2 3,ψ ψ∆∆ ) 

and  ( 2 , 3ϕ ϕ∆∆ ) given by (10).   

Let [x(t0), y(t0), z(t0), u(t0), v(t0), w(t0)] be the cylinder’s initial translation and 

velocity and [ 1 0 2 0 3 0( ), ( ), ( )t t tψ ψ ψ , 1 0 2 0 3 0( ),  ( ),  ( )t t tω ω ω ] be the cylinder’s initial 
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orientation and angular velocity. Following the procedures listed in Fig. 8, the values of 

these variables for next time step (t = t1) are calculated.  Repeat of the procedures leads to 

predicting the cylinder’s position and orientation as falling through the water column. 

Theoretically, the model integration stops when the vertical coordinate of COM 

[i.e., z(t)] in the E-coordinate and the elevation angle 2( )tψ  in the M-coordinate do not 

change with time (in the sediment column) 

                                          20,      0.ddz
dt dt

ψ
= =                                              (88)        

Practically, the following criteria are used to stop the integration,  

                                                2
1,      ddz

dt dt
ψ

2ε ε≤ ≤ ,                                             (89) 

  
where ( 1 2,ε ε ) user-defined small values. In this study, we use  

 6 4
1 210  m,   10ε ε− −= = . 

                                8. Cylinder Drop Experiments 

Two cylinder drop experiments were conducted to collect data for the model 

evaluation. Exp-1 was designed to collect data on cylinder's motion in the water column 

for various combinations of the cylinder’s parameters.  Exp-2 was designed to collect 

synchronized data on sediment parameters (shear strength and density) and the cylinder’s 

burial depth and orientation.  

8.1. Exp-1 

Exp-1 was conducted at the Naval Postgraduate School swim pool in June 2001 

(Gilles 2001 [16]). It consisted of dropping each of three model cylinders (Fig. 9) into the 

water where each drop was recorded underwater from two viewpoints. The physical 
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parameters of the model cylinders are listed in Table 2. Fig. 10 depicts the overall setup. 

The controlled parameters for each drop were: L/R ratio, χ -value, initial velocity (Vin), 

and drop angle. The E-coordinate system is chosen with the origin at the corner of the 

swimming pool with the two sides as x- and y-axes and the vertical z-axis.  The initial 

injection of cylinders was in the (y, z) plane (Fig. 11). 

Initial velocity (Vin) was calculated by using the voltage return of an infrared 

photo detector located at the base of the cylinder injector. The infrared sensor produced a 

square wave pulse when no light was detected due to blockage caused by the cylinder's 

passage. The length of the square wave pulse was converted into time by using a 

universal counter. Dividing the cylinder's length by the universal counter's time yielded 

Vin. The cylinders were dropped from several positions within the injector mechanism in 

order to produce a range of Vin. The method used to determine Vin required that the 

infrared light sensor be located above the water's surface. This distance was held fixed 

throughout the experiment at 10 cm. 

         The drop angle (initial value of ( )
2

inψ ) was controlled using the drop angle device. 

Five screw positions marked the 15o, 30o, 45o, 60o, and 75o. The drop angles were 

determined from the lay of the pool walkway, which was assumed to be parallel to the 

water's surface. A range of drop angles was chosen to represent the various entry angles 

that air and surface laid mines exhibit in naval operation. This range produced velocities 

whose horizontal and vertical components varied in magnitude. This allowed for 

comparison of cylinder trajectory sensitivity with the varying velocity components. 
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      For each drop the cylinder was set to a χ -value. For positive χ -value, the 

cylinders were placed into the injector so that the COM was located below the geometric 

center. For negative χ -value, the COM was located above the geometric center to 

release. A series of drops were then conducted in order of decreasing mine length for 

each angle. Table 3 indicates number of drops conducted for different drop angles and 

χ -value for L/R = 15/2. Number of drops for other L/R ratios (12/2, 9/2) is comparable 

to that for L/R ratio of 15/2. All together there were 712 drops. Each video camera had a 

film time of approximately one hour. At the end of the day, the tapes were replayed in 

order to determine clarity and optimum camera position. 

Upon completion of the drop phase, the video from each camera was converted to 

digital format. The digital video for each view was then analyzed frame by frame (30 Hz) 

in order to determine the mine's position in x-z and y-z planes. The cylinder’s top and 

bottom positions were input into a MATLAB generated grid, similar to the ones within 

the pool. The first point to impact the water was always plotted first. This facilitated 

tracking of the initial entry point throughout the water column. The cameras were not 

time synchronized; thus, the first recorded position corresponded to when the full length 

of the mine was in view. 

8.2. Exp-2 

Exp-2 was conducted on the R/V John Martin on May 23, 2000 (Smith 2000 

[17]). The barrel with density ratio of 1.8 was released horizontally while touching the 

surface.  The initial conditions are 

                                     Vin = 0,     ( )
2

inψ  =90o,                                               (90) 
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This would be to eliminate any chance of inertial effects caused by uneven 

introduction into the air-sea interface.  This also set the initial velocity parameter in the 

code to zero. The barrel was to be released 17 times.  The diver would snap the quick-

release shackle on the barrel and then dive down to conduct measurements.  The average 

depth of the water was 13 meters.  Since it was uncertain the path the barrel would 

follow, both the releasing diver and a second safety diver would stay on the surface until 

after the barrel had dropped.  Once reaching the bottom, one diver would take penetration 

measurements using a meter stick marked at millimeter increments while the other would 

take a gravity core.  After 17 drops, the divers began to run out of air and results were not 

varying greatly so the decision was made to end the experiment.  Upon return to the 

Monterey Bay Aquarium Research Institute, the gravity cores were taken immediately to 

the USGS Laboratories in Menlo Park, California where they were refrigerated until the 

analysis could be performed on May 31 – June 1, 2000. 

 Analysis of the gravity cores was begun on May 31, 2000 at the USGS 

Laboratories in Menlo Park, California.  The gravity cores were sliced into two-

centimeter segments to a depth of ten centimeters, and then sliced into four-centimeter 

segments.  A Fall Cone Apparatus (Model G-200) was used to determine sediment 

density ( )s zρ  and shear strength.  In the test, it is assumed that the shear strength of 

sediment at constant penetration of a cone is directly proportional to the weight of the 

cone and the relation between undrained shear strength s and the penetration h of a cone 

of weight Q is given by  

                                               ,                                                     (91) 2( ) /S z KQ h=
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where K is a constant which depends mainly on the angle of the cone, but is also 

influenced by the sensitivity of the clay/sediment.   Four different cones are used with 

this instrument, each one having the measuring range listed in Table 4. The cones are 

suspended from a permanent magnet.  By pressing a knob, the magnet is moved so that 

the magnetic field is broken momentarily, and the cone is released. Measurements are 

taken of penetration depth and the evolution is repeated five times per sediment slice.  

These values are then averaged and correlated with a table which gives shear strength. 

Previous studies (Chu et al. 2002 [18]) showed that the sediment parameters are the most 

critical element in determining how deep an object was buried when it came to rest.  

During the experiment at the Monterey Bay, we obtained 17 gravity cores. Sediment bulk 

density and shear strength profiles (Fig. 12) show generally increase with depth until 

approximately 6-9 cm below the water-sediment interface.    

                                        9. Model-Data Comparison 

The U.S. Navy has a 2D model in x-z plane (IMPACT28) to predict cylinder’s 

trajectory and impact burial. Since the motion of cylinder is 3D, the impact burial 

prediction using the 2D model has large errors (Taber 1999 [19]; Evans 2002 [20]; Chu et 

al. 2000 [21]).  In this study, a new 3D model (called IMPACT35) is developed on the 

base of momentum balance (19) and moment of momentum balance (20) using triple 

coordinate transform (Chu et al. 2004 [8]) and cylinder decomposition. To evaluate the 

value-added of the 3D model, comparison among the observed data (from Exp-1 and 

Exp-2) and predicted data using 2D (IMPACT28) and 3D (IMPACT35) models is 

conducted. Since position and orientation of the cylinder was tape recorded after it is 
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submerged into the water, the free water surface effect was not detected from Ext-1 and 

Ext-2.   

 

 

9.1. Comparison Using Exp-1 Data 

 Improvement from IMPACT28 to IMPACT35 in predicting cylinders’ trajectory 

and orientation in the water column is verified using the Exp-1 data.  Here, we list two 

examples.   

Positive χ  (Nose-Down): Cylinder #1 (L = 15.20 cm, ) with -31.69 g cmρ = χ = 

0.74 cm is injected to the water with the drop angle 45o.  The physical parameters of this 

cylinder are given by                                        

    .                    (92a)  2 2
1 2 3 322.5 g,   330.5 g cm ,    5783.0 g cmm J J J= = = =

The initial conditions for the numerical models (IMPACT28 and IMPACT35) are taken 

the same as the experiment (see Section 8)  

                      -1 -1
 0 0 0 0 0 00,  0,  0,  0,  1.55 m s ,  2.52 m s , x y z u v w= = = = = − = −

  -1 -1
10 20 30 10 20 30=0,  60 ,   95 ,  0,  0.49 s ,  0.29 so oψ ψ ψ ω ω ω= = − = = = .    (92b)    

Substitution of the model parameters (92a) and the initial conditions (92b) into 

IMPACT28 and IMPACT35 leads to the prediction of the cylinder’s translation and 

orientation that are compared with the data collected during Exp-1 at time steps (Fig. 13).  

The new 3D model (IMPACT35) simulated trajectory agrees well with the observed 

trajectory. Both show the same slant-straight pattern and the same travel time (1.23 s) for 
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the cylinder passing through the water column.  However, the existing 2D model 

(IMPACT28) has less capability to predict the cylinder’s movement in the water column. 

The travel time predicted by IMPACT28 is 1.5 s, much more than the observed value. 

Negative χ  (Nose-Up):  Cylinder #2 (L = 12.10 cm, ) with -31.67 g cmρ = χ = -

1.00 cm is injected to the water with the drop angle 30o.  The physical parameters of this 

cylinder are given by                                         

             .           (93a)  2 2
1 2 3 254.2 g,   271.3 g cm ,    3312.6 g cmm J J J= = = =

The initial conditions for the numerical models (IMPACT28 and IMPACT35) are taken 

the same as the experiment (see Section 8)  

-1 -1
 0 0 0 0 0 00,  0,  0,  0,  0.75 m s ,  0.67 m s , x y z u v w= = = = = − = −  

-1 -1
10 20 30 10 20 30=0,  24 ,   96 ,  0,  5.08 s ,  0.15 so oψ ψ ψ ω ω ω= = − = = − = .  (93b)                                     

The predicted cylinder’s translation and orientation are compared with the data collected 

during Exp-1 at time steps (Fig. 14).  The new 3D model (IMPACT35) simulated 

trajectory agrees well with the observed trajectory. Both show the same flip-spiral pattern 

and the same travel time (1.73 s) for the cylinder passing through the water column.  The 

flip occurs at 0.11 s (0.13 s) after cylinder entering the water in the experiment 

(IMPACT35). After the flip, the cylinder spirals down to the bottom. However, the 

existing 2D model (IMPACT28) does not predict the flip-spiral pattern.  

9.2. Comparison Using Exp-2 Data 

After running the two models (IMPACT35 and IMPACT28) for each gravity core 

regime [ ( ), ( )s z S zρ ] from the initial conditions (90),   the burial depths were compared 
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with measured burial depth data (Fig. 15). As evident, IMPACT35 improves the 

prediction capability.  The existing 2D model (IMPACT25) over predicts actual burial 

depth by an order of magnitude on average. However, the 3D model (IMPACT35) 

predicts the burial depth reasonably well without evident over-prediction. Since the 

gravity cores were taken for approximately two to three meters from the impact location, 

several cores were taken for each drop. This allowed an average to be calculated in order 

to yield more accurate data for each drop.   

                                               10. Conclusions 

(1) A 3D model (IMPACT35) is developed to predict the translation and 

orientation of falling rigid cylinder through air, water, and sediment. It contains three 

components: triple coordinate transform, cylinder decomposition, and hydrodynamics of 

falling rigid object in a single medium (air, water, or sediment) and in multiple media 

(air-water and water-sediment interfaces).  

(2) Triple coordinate transform is useful for modeling the movement of rigid body 

in air-water-sediment. The body forces (including buoyancy force) and torques are 

represented in the E-coordinate system, the hydrodynamic forces (such as the drag and 

lift forces) and torques are represented in the F-coordinate, and the cylinder’s moments of 

gyration are represented in the M-coordinate.   The momentum (moment of momentum) 

equation for predicting the cylinder’s translation velocity (orientation) is represented in 

the E-coordinate (M-coordinate) system. Transformations among the three coordinate 

systems are used to convert the forcing terms into E-coordinate (M-coordinate) for the 

momentum (moment of momentum) equation.  
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              (3) During the penetration, the part that contacts fluid (air or water) is treated as 

an equivalent cylinder with the same mass and PCOV location.  The buoyancy and 

hydrodynamic forces and torques are computed in the equivalent cylinder. The procedure 

developed for calculating external forcing (buoyancy and hydrodynamic forces and 

torques) for a single cylinder is used for the equivalent cylinder.  

 (4) Impact force and torque below the water-sediment interface is calculated on 

the base of the fact that at the instance of penetration, the sediment exerts an impact force 

only on the portion of the cylinder’s surface, which moves towards the sediment.  The 

normal and tangential components of the impact force are calculated separately. The 

normal component is calculated using the sediment density and shear strength profiles. 

The tangential component is computed using the friction law between two solid bodies 

(i.e., proportional to the normal component). The torque is easily obtained after the 

impact force is determined.   

(5) The dynamic system for predicting trajectory and orientation of a rigid 

cylinder in air, water, and sediment are highly nonlinear. For example, the apparent 

torque in the moment of momentum equation (20) (represented in the F-coordinate) is 

nonlinear. The drag and lift forces are nonlinear terms which depend on the square of the 

fluid-to-body velocity.  Two major assumptions are used to simplify the system. First, the 

apparent torque is neglected. Second, for the given time step tn, the nonlinear drag and lift 

forces and torques are linearized at any time instance with temporally varying 

coefficients (also dependent on the fluid-to-cylinder velocity) evaluated at the previous 

time step, tn-1. With the given cylinder’s parameters (translation, velocity, orientation, and 

angular velocity) at the time step tn: [x(tn), y(tn), z(tn); u(tn), v(tn), w(tn); 
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1 n 2 n 3 n( ), ( ), ( )t t tψ ψ ψ , 1 2 3( ),  ( ),  ( )n nt t ntω ω ω ],   the model has analytical solutions at the 

time  step tn+1.  The recursive procedure is established to predict the cylinder’s 

translation, velocity, orientation, and angular velocity through air, water, and sediment 

from the initial conditions. The strength of such treatments guarantees the convergence of 

the model integration.  

Since neglect of the apparent torque is feasible only for slow rotation around the 

cylinder’s main axis (i.e., small self-spin angular velocity 1ω ), and since local 

linearization of drag and lift forces and torques are feasible for relatively small fluid-to-

cylinder velocity, the model might not be valid if 1ω  or the fluid-to-cylinder velocity is 

large such as fast water entry and fast self spinning.  A fully numerical calculation (rather 

than the recursive procedure) should be developed for the prediction.   

(6) Two cylinder drop experiments were conducted to evaluate the 3D model. 

Model-data comparison shows that IMPACT35 improves the prediction capability 

drastically with an order of error reduction in the cylinder burial depth, more accurate 

cylinder track (depth and orientation) prediction, and more accurate travel time of the 

cylinder through air-water-sediment.   
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Fig. 2.  Three coordinate systems.  
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Fig. 3. Three patterns of cylinder penetration with the cross section being (a) a complete 
ellipse,  (b) a cut-off ellipse with one side straight line, and (c) a cut-off ellipse with two 
side straight lines.   
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Fig. 4.  Illustration of PCOV (B-), x1, and ξ −  for the tail part [C(1), D(1)] for the 

case   in Fig. 3a.  
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                                Fig. 5.  Geometry of the part D(1).   
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Fig. 6. Momentum and angular momentum balance for cylinder’s penetration through the 
water-sediment interface. 
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Fig. 7. The impact (resistant) force exerted on the part of the object’s surface moving 
towards the sediment.  
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                Fig. 9. Internal components of the model cylinder. 
 
 
 
 
 

 

            
                           Fig. 10.   Exp-1 equipments. 
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                               Fig. 11.  Top view of Exp-1.  

 

 

 

 
 

 

Fig. 12. Mean sediment density ( )s zρ  and shear strength S(z) profiles in the Monterey 
Bay collected during the cylinder drop experiment on May 31, 2000.  
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Fig. 13.  Movement of Cylinder #1 (L = 15.20 cm, ) with -31.69 g cmρ = χ = 0.74 m and 
drop angle 45o obtained from (a)  experiment,  (b) 3D IMPACT35 model, and (c) 2D 
Impact28 model.  
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Fig. 14.  Movement of Cylinder #2 (L = 12.10 cm, ) with -31.67 g cmρ = χ = -1.00 cm 
and drop angle 30o obtained from (a)  experiment,  (b) 3D IMPACT35 model, and (c) 2D 
Impact28 model.  
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   Fig. 15. Comparison among observed and predicted burial depths.  
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Table 1. Geometric parameters during the cylinder penetration  
 
 Lc 1h   2h   
Upper & Lower Parts  
of  Fig.3a 

>0 2R 0 

Upper Part of  Fig. 3b >0 2R 0 ~ 2R 
Lower Part of  Fig.3b 0 0 ~ 2R 0 
Upper & lower Parts  
of Fig.3c 

0 0 ~ 2R 0 ~ 2R 

 

 
             Table 2.  Physical parameters of the model cylinders 
 
Cylinder Mass (g)  L (cm)  Volume  

 (cm3) 
mρ  

(g m-3) 
J1      
(g m2) 

χ   
    (cm) 

 J2 (J3) 
(g m2) 

      
   1 

322.5  15.20 191.01 1.69  330.5 0.00 
0.74 
1.48  

6087.9
5783.0
6233.8 

     2 254.2  12.10 152.05 1.67  271.3 0.06 
0.53 
1.00  

3424.6
3206.5
3312.6 

     3 215.3    9.12 114.61 1.88  235.0 0.00 
0.29 
0.58  

1695.2
1577.5
1556.8 

 
 

Table 3. Number of drops conducted for different drop angles and χ -values for          

                L/R = 15/2. 
( )
2

inψ  15o 30o 45o 60o 75o 

2χ  13 15 15 15 12 

1χ    9 15 15 15   9 

0χ  12 14 15 18   6 

1χ−    0   6   6   6   0 

2χ−    2   6   6   0   0 
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Table 4.  Measuring ranges of the gravity cores  

Weight 
(g) 

Apex-
Angle 

Penetration 
(mm) 

Undrained 
shear strength  
(kPa) 

400  30° 4.0 – 15.0 25 – 1.8 

100  30° 5.0 – 15.0 4 – 0.45 

60 60° 5.0 – 15.0 0.6 – 0.067 

10  60° 5.0 – 20.0 0.10– 0.0063 

 


